ЕН.01 МАТЕМАТИКА
284 гр. на 29.09 (2ч)
Задание 1. Повторить тему «Интегралы».

Задание 2. Ознакомиться с материалом лекции, приведенной ниже. 

Задание 3. Составить конспект, ответив на вопросы:

1) Понятие неопределенного интеграла.

2) Способы вычисления неопределенного интеграла.

3) Запишите таблицу основных интегралов.

4) Понятие определенного интеграла.

5) Геометрический смысл определенного интеграла. 
6) Запишите формулу Ньютона-Лейбница.
7) Способы вычисления определенного интеграла.

8) Разберите примеры, приведенные в лекции и запишите их в тетрадь.

Выполненную работу покажите преподавателю на следующем уроке.

Неопределенный интеграл. Непосредственное интегрирование. Замена переменной

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачами, которые мы сейчас относим к задачам на вычисление площадей.

Многие значительные достижения математиков Древней Греции в решении таких задач связаны с применением метода исчерпывания, предложенным Евдоксом Книдским. С помощью этого метода Евдокс доказал: 

1. Площади двух кругов относятся как квадраты их диаметров.

2. Объём конуса равен 1/3 объёма цилиндра, имеющего такие же высоту и основание.

Метод Евдокса был усовершенствован Архимедом и были доказаны такие вещи:

1. Вывод формулы площади круга.

2. Объем шара равен 2/3 объема цилиндра.

Все достижения были доказаны великими математиками с применением интегралов.

Символ 
[image: image1.wmf]ò

введен Лейбницем в 1675 г. Этот знак является изменением латинской буквы S. Само слово «интеграл» придумано Бернулли в 1690 г. Оно происходит от латинского integro, которое переводится, как приводить в прежнее состояние, восстанавливать. Действительно, операция интегрирования обратная операции дифференцирования т.е. для того, чтобы проверить правильность нахождения интеграла необходимо продифференцировать ответ и получить подынтегральную функцию. Другими словами интегральное исчисление решает задачу: по заданной производной или дифференциалу неизвестной функции требуется определить эту функцию. Отсюда можно сделать вывод, который мы запишем в виде определения.

Определение 1: Функция F(x) называется первообразной для функции f(x) на отрезке [a;b], если во  всех точках этого отрезка выполняется равенство 
[image: image2.wmf](
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 = f(x) или dF(x)=f(x)dx
   Так, функция F(x) = xm является первообразной для f(x)=mxm-1, так как 

(xm)’=mxm-1.

   Точно также функция F(x) =ln x есть первообразная для f(х)=
[image: image3.wmf]x
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, так как 

(ln x)’=
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.

Признак постоянства функции:

    Если F’(x)=0 на некотором промежутке I, то функция F – постоянна на этом промежутке, т.е. F(x)=C.

Все первообразные функции f можно записать в одну формулу, которую называют общим видом первообразных для функции f. Запишем это в виде теоремы.

  Теорема: Любая первообразная для функции f на промежутке I может быть записана в виде F(x)+C, где F(x) – одна из первообразных для функции f(x)  на промежутке I, C – произвольная постоянная.

   Этому свойству можно придать геометрический смысл: графики любых двух первообразных для функции f получаются друг из друга параллельным переносом вдоль оси Oy.      

                                  у                                             




           0                            х 

Три правила нахождения первообразных

Правило №1: Если F есть первообразная для функции f, а G – первообразная для g, то F+G – есть первообразная для f+g. 

(F(x) + G(x))’ = F’(x) + G’(x) = f + g

Правило №2: Если F – первообразная для f, а k – постоянная, то функция kF –                         первообразная для kf. 

(kF)’ = kF’ = kf
Правило №3: Если F – первообразная для f, а k и b– постоянные (
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   Определение 2:  Выражение F(x) + C, где C - произвольная постоянная, называют неопределенным интегралом и обозначают символом 
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   Из определения имеем:
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   Неопределенный интеграл функции f(x), таким образом, представляет собой множество всех первообразных функций для f(x).

    В равенстве (1) функцию f(x) называется подынтегральной функцией, а выражение f(x)dx– подынтегральным выражением, переменную x – переменной интегрирования, слагаемое C - постоянной интегрирования.

    Интегрирование представляет собой операцию, обратную дифференцированию. Для того чтобы проверить, правильно ли выполнено интегрирование, достаточно продифференцировать результат и получить при этом подынтегральную функцию.

Свойства неопределенного интеграла.

   Опираясь на определение первообразной, легко доказать следующие свойства неопределенного интеграла

1. Производная от неопределенного интеграла равна подынтегральной функции, то есть если 
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2. Дифференциал от неопределенного интеграла равен подынтегральному выражению
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3. Неопределенный интеграл от дифференциала некоторой функции равен этой функции плюс произвольная постоянная
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4. Неопределенный интеграл от алгебраической суммы двух или нескольких функций равен алгебраической сумме их интегралов
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5. Постоянный множитель можно выносить за знак интеграла, то есть если a=const, то 
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Таблица простейших интегралов

1. 
[image: image16.wmf]ò

+

+

=

+

C

n

x

dx

x

n

n

1

1

,(n 
[image: image17.wmf]¹

-1)
2. 
[image: image18.wmf]ò

+

=

C

x

x

dx

ln


3. 
[image: image19.wmf]C

a

a

dx

a

x

x

+

=

ò

ln


4. 
[image: image20.wmf]ò

+

=

C

e

dx

e

x

x


5. 
[image: image21.wmf]ò

+

=

C

x

xdx

sin

cos


6. 
[image: image22.wmf]ò

+

-

=

C

x

xdx

cos

sin


    Интегралы, содержащиеся в этой таблице, принято называть табличными. Отметим частный случай формулы 1:
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    Приведем еще одну очевидную формулу:
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, т. е. первообразная от функции, тождественно равной нулю, есть постоянная.

Непосредственное интегрирование – интегрирование с использованием таблицы неопределенных интегралов, основных свойств и тождественных преобразований подынтегральной функции.

Основные формулы интегрирования
1. [image: image26.png][0dx=C




2. [image: image27.png][dx=x+C
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cos x+ C
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 = sin x + C
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= tgx + C
12. [image: image37.png]dx =—ctgx+C




13. [image: image38.png][eXdx=e"+ C




14.  [image: image39.png][Gex + byrdx = 22 ¢
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 p ≠ -1, k ≠ 0

15.  [image: image40.png]kx+b



dx=[image: image41.png]


 ln(kx+b)+C, где k[image: image42.png]
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dx=[image: image44.png]L phx+b



+C, где k[image: image45.png]



17. [image: image46.png][ sin(kx + b)dx = —%



cos(kx+b)+C, где k[image: image47.png]
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19.  [image: image50.png]


 dx=[image: image51.png]Ina



+C, где a[image: image52.png]0,a+0
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+C, a[image: image56.png]
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+ C, a[image: image63.png]
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Вычисление интегралов с помощью непосредственного использования таблицы простейших интегралов и основных свойств неопределенных интегралов называется непосредственным интегрированием.

Пример 1. [image: image71.png]



Пример 2.[image: image72.png]



Это наиболее распространенный метод интегрирования сложной функции, состоящий в преобразовании интеграла с помощью перехода к другой переменной интегрирования.

Пример 3. Сначала приведем полное решение:
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Комментарии:

(1) Используем формулу квадрата суммы [image: image74.png](a+b)! = a® +2ab+b*



, избавляясь от степени.

(2) Вносим [image: image75.png]


 в скобку, избавляясь от произведения.

(3) Используем свойства линейности интеграла (оба правила сразу).

(4) Превращаем интегралы по табличной формуле [image: image76.png]x4l

Ix"dx: X iCne-)

n+l



.

(5) Упрощаем ответ. Здесь следует обратить внимание на обыкновенную неправильную дробь [image: image77.png]


 – она несократима и в ответ входит именно в таком виде. Не нужно делить на калькуляторе [image: image78.png]


! Не нужно представлять ее в виде [image: image79.png]


!

Пример 4. Найти неопределенный интеграл [image: image80.png][2xfran



.

Используя свойство неопределенного интеграла, вынесем за знак интеграла постоянную 2. Затем, выполняя элементарные математические преобразования, приведем подынтегральную функцию к степенному виду:
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Пример 5.
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Пример 6.
[image: image83.png]


+C
Замена переменной.

Если интеграл затруднительно привести к табличному с помощью элементарных преобразований, то в этом случае пользуются методом подстановки. Сущность этого метода заключается в том, что путём введения новой переменной удаётся свести данный интеграл к новому интегралу, который сравнительно легко берётся непосредственно.

Алгоритм вычисления неопределенного интеграла методом подстановки:
1. Определяют, к какому табличному интегралу приводится данный интеграл (предварительно преобразовав подынтегральное выражение, если нужно).

2. Определяют, какую часть подынтегральной функции заменить новой переменной, и записывают эту замену.

3. Находят дифференциалы обеих частей записи и выражают дифференциал старой переменной (или выражение, содержащее этот дифференциал) через дифференциал новой переменной.

4. Производят замену под интегралом.

5. Находят полученный интеграл.

6. В результате производят обратную замену, т.е. переходят к старой переменной. Результат полезно проверять дифференцированием.

Рассмотрим примеры.

Примеры. Найти интегралы:

1) [image: image84.png]f@x3+
1



)4[image: image85.png]xtdx




Введем подстановку:

[image: image86.png]


 

Дифференцируя это равенство, имеем: [image: image87.png]dt = 6x7dx.




Выразив отсюда [image: image89.png]x2,
dx



, получим: [image: image91.png]


. Подставив в данный интеграл вместо [image: image93.png]2x3+1



 и [image: image95.png]x2,
dx



 их выражения, получим:
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Найдите интегралы:
Пример 1 [image: image100.png][ sin e



. 

Подстановка: cosx=t, -sinxdx = dt, [image: image101.png]



Решение:[image: image102.png][ sin xx=





Пример 2. ∫e-x3x2dx  

Подстановка:-x3=t, -3x2dx=dt, 

Решение: ∫e-x3x2dx=∫et(-1/3)dt=-1/3et+C=-1/3e-x3+C
Пример 3. 
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Пример 4.
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Пример 5.
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Определенный интеграл. Вычисление определенного интеграла. Геметрический смысл определенного интеграла

Понятие определенного интеграла

С геометрической точки зрения интегральная сумма 
[image: image106.wmf]s

 представляет собой сумму площадей прямоугольников, основаниями которых являются частичные отрезки 
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 соответственно (рис. 1). Обозначим через 
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 длину наибольшего частичного отрезка 
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                                                            Рис. 1
Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка 
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 на частичные отрезки, ни от выбора точек 
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 в них, то этот предел называется определенным интегралом от функции 
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В этом случае функция 
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 называется интегрируемой на 
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. Числа а и b называются соответственно нижним и верхним пределами интегрирования, 
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 – переменной интегрирования; отрезок 
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 называется промежутком интегрирования.

Теорема 1. Если функция 
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Геометрический смысл определенного интеграла

Пусть на отрезке 
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 задана непрерывная неотрицательная функция 
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. Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f(x), снизу – осью Ох, слева и справа – прямыми x = a и x = b (рис. 2).
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                                                                Рис. 2

Определенный интеграл 
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Основные свойства определенного интеграла

1. Значение определенного интеграла не зависит от обозначения переменной интегрирования: 
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2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю: 
[image: image137.wmf]ò

=

a

à

dx

x

f

.

0

)

(


3. Если 
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4. Постоянный множитель можно выносить за знак определенного интеграла: 
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5. Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:
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6. Если функция 
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7.  (теорема о среднем). Если функция 
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 непрерывна на отрезке 
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, то на этом отрезке существует точка 
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Формула Ньютона–Лейбница

Вычисление определенных интегралов через предел интегральных сумм связано с большими трудностями. Поэтому существует другой метод, основанный на тесной связи, существующей между понятиями определенного и неопределенного интегралов.

Теорема 2. Если функция 
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 непрерывна на отрезке 
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 – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:
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которая называется формулой Ньютона–Лейбница. Разность 
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 принято записывать следующим образом:
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где символ
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 называется знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:
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Нахождение определенных интегралов с помощью формулы Ньютона-Лейбница осуществляется в два этапа: на первом этапе находят некоторую первообразную 
[image: image158.wmf])
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 для подынтегральной функции 
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[image: image160.wmf])

(

)

(

a

F

b

F

-

 значений этой первообразной на концах отрезка 
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Пример 1. Вычислить интеграл 
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Решение. Для подынтегральной функции 
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. Так как в формуле Ньютона-Лейбница можно использовать любую первообразную, то для вычисления ин-
теграла возьмем первообразную, имеющую наиболее простой вид: 
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Пример 2. Вычислить интеграл 
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Решение. По формуле Ньютона-Лейбница имеем:
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I. Обобщение и закрепление новых знаний.

1. Вычислить предел функции, используя свойства пределов, первый и второй замечательные пределы.

1. Вычислить предел функции:
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2. Вычислить предел функции:
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3. Вычислить предел функции:
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4. Вычислить предел функции:
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2. Исследовать функцию с помощью производной и построить график  функции.

Исследовать функцию 
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 на непрерывность в точке 
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3. Найти производную функции, аргументировать применение  геометрического и физического смысла производной.

1. Найти производную функции 
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2. Найти производную третьего порядка функции 
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3. Написать уравнение касательной к графику функции 
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 в точке с абсциссой 
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4. Материальная точка движется по закону 
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. Найти скорость и ускорение в момент времени t=5 с. (Перемещение измеряется в метрах.)

4. Используя свойства интегралов, различные методы интегрирования, найти интегралы.
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Решение:

а)   Найдем интеграл, применив свойства неопределенного интеграла и формулы (1) и (2) табличного интегрирования:
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Интегралы (б – е) решим методом замены переменной.
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{для нахождения интеграла применим формулу (2)}
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{для нахождения интеграла применим формулу (12)}
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{для нахождения интеграла применим формулу (4)}
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{для нахождения интеграла применим формулу (2)}
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{для нахождения интеграла применим формулу (5)}
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